
MIDAS: An Agent Based Data Transcoding Services Framework 
 
Sunil Movva, Rahul Ramachandran*, Xiang Li, Sarita Khaire, Ken Keiser, Helen Conover, Sara Graves 

Information Technology and Systems Center 
University of Alabama in Huntsville 

Huntsville, AL 35899 
*rramachandran@itsc.uah.edu 

 
Abstract - The objective of this agent framework is to provide 
end users intelligent data processing services such as subsetting 
and data format translation by coupling Earth Science Markup 
Language (ESML) interchange technology and ontologies.  
These ontology driven agents will be able to guide the user 
through the process of data processing and make decisions for 
them based on their output requirements.  This paper describes 
the design approach used to extend the ESML schema to 
incorporate semantics using ontologies.  It explains the overall 
architecture including the organization layers and the agent 
design used in this framework.  A set of performatives derived 
from the Knowledge Query and Manipulation Language 
(KQML) to allow agent interaction are also be described.  
Finally, the paper discusses the interaction of the different 
components of this framework to meet user’s science data 
preprocessing queries. 
 

I. INTRODUCTION 
 

Large volumes of science data sets are being archived by 
different agencies in a variety of data formats. Typically, 
these datasets have to be preprocessed to be easily and 
effectively used by the scientists. Data format translation and 
subsetting are examples of such preprocessing steps 
respectively. Subsetting provides the data consumer with the 
capability to reduce the size and complexity of the data 
ordered, providing the data of interest. A vast number of 
applications are available which can provide data 
preprocessing. Most of these are either standalone or at a 
particular URL on the web and are often specific to a 
particular type of dataset.  The concept of Semantic Web [1] 
has expanded research into the area of smart web services 
where the web services are described using service 
ontologies. Applications can look up for services on the 
semantic web and request these services on the fly. This 
provides a way to build smart and yet loosely coupled 
applications. However, such services have not been 
demonstrated in the Earth Science domain and have typically 
been limited to just visualization.  Part of this problem is the 
need for a richer set syntactic and semantic metadata to allow 
applications to fully use the data sets.  This paper describes 
MIDAS, an agent-based system that can provide intelligent 
automated data preprocessing services for Earth Science data. 
MIDAS provides two agent enabled data preprocessing 
services, Subsetting and Data Format Translation.  MIDAS 
architecture will be discussed in this paper. Although the 
current prototype is not using web services, it can be easily 

adapted to Semantic Web and the Semantic Grid 
environment.  
 

II. BACKGROUND INFORMATION 

 
A. Agents 
A wide range of research is going on in the area of agent 
technology. As the range of research has increased, a general 
definition of an agent has disappeared. The definition of an 
agent now ranges from a weak to a strict notion. For the 
purpose of this work, a software agent is defined as a 
component that adheres to the following axioms: 

• Agents are autonomous. 
• Agents can perceive its environment and act 

accordingly.  
• Agents should interact with other agents. 
• Agents work towards a goal. 
• Agents have inferencing capability. 

Characteristics of an agent are discussed in [2] and [3].  
Agents can be classified into types based on their role and 
behavior. Agent topologies are discussed in detail in [4].  
 
B. Multi-Agent Systems (MAS) 
Multi-Agent Systems falls under the broad category of 
Distributed Artificial Intelligence (AI). A Multi-Agent 
System is an organization of problem-solver entities that 
work together to achieve a goal that is beyond the individual 
capabilities or knowledge of each entity [5]. MAS are 
generally loosely coupled. Since each agent in the system is 
autonomous, there is no global control of the system. 
Computation of any task is asynchronous which makes it 
suitable for the internet. 
  

III. MIDAS SYSTEM DESCRIPTION 
 
In order to provide intelligent data-transcoding services, an 
application requires a rich set of syntactic and semantic meta-
data associated with the dataset. The Earth Science Mark-up 
Language (ESML) is a mechanism to provide full syntactic 
metadata for different earth science datasets [6].  In order to 
provide a rich set of semantic metadata for existing data sets 
requires creating an extension to the ESML.  This extension 
adds a new component to the existing ESML Schema 
containing the semantic metadata about the dataset. The 
newly added component allows description of semantic 
metadata in a description file as instances of classes in an 



external ontology.  The ESML Description File now not only 
contains the syntactic metadata and the semantic metadata but 
also the link the appropriate ontology where these semantic 
terms are defined.  An example of an ESML Description File 
with semantic metadata is shown in Fig.1. 
  
A. MIDAS Design 
The MIDAS design is a multi-layer model based on [7]. Each 
layer describes the design with respect to a particular aspect 
of a MAS. This ensures that all the requirements for a MAS 
to function are addressed. The design consists of the 
following layers.  
• Infrastructure Layer: This layer provides the 
environment that agents can act upon, i.e. services. 
• Agent Layer: This layer contains the design of 
agents used to achieve the overall goal of the framework 
• Organization Layer: This layer defines the 
organizational structure of the system which is important for 
agents interaction 
• Coordination Layer: This layer defines coordination 
methods required to resolve conflicts and select the next 
agent 
• Constraint Layer: This layer verifies whether the 
system goals are met and interfaces with the users/user 
interface 
 
Organization Layer Design: A Multi-Agent System can be 
viewed as an organization of groups of agents that interact to 
achieve a common goal. This is analogous to any corporate 
organizational structure, where you have a General Manager 
managing the organization, Divisional Managers, managing 
their particular divisions and employees working in particular 
division.  Because of the scalability of this organizational 
hierarchy, i.e., a new division can be added as the company 
expands, MIDAS incorporates this organizational structure in 
its design. 
  
The organizational hierarchy can be viewed as a tree structure 
with agents represented as nodes (see Fig.2). The root node is 
the Global Manager agent (analogous to a General Manager 
in an organization) and it controls the management domain. 
The next level consists of a group of Domain Manager agents 
(analogous to divisional managers) that report to the Global 
Manager. These managers are responsible for the 
management of service domains like a subsetting domain, 
data format translation domain. The lowest level consists of 
Worker agents associated with their corresponding services. 
These agents communicate with their corresponding Domain 
Manager Agents.   
 
Agent Layer Design: MIDAS defines two types of agents, the 
Manager agents and the Worker agents. The two types differ 
in their role and behavior.  The manager agents are concerned 
with allocating tasks.  There are two sub-types of manager 
agents called the Global Manager and the Domain Manager. 

The Global Manager is responsible for the overall supervision 
of processing the user task. It breaks the task into sub-tasks 
and sends requests to the Domain Managers to process the 
sub-tasks. It keeps track of the status of the task.  The 
Domain Manager agents are broker agents. They use 
advertisements to find the appropriate agent for a given task. 
The Worker agents in a domain advertise their capabilities 
with their respective Domain Manager by sending an 
Advertise message. These Advertise messages contain 
references to a service ontology (defined in DAML+OIL). 
The Domain Manager is integrated with a client interface to 
an inference engine. The specific inference engine used in 
MIDAS is Renamed ABox and Concept Expression Reasoner 
[8]. The Domain Manager uses this client interface to load 
the advertisements into the inference engine. As it gets a 
request message, it parses it to get the Service-Concept URI 
and queries the inference engine to find instances of that 
concept. The Service-Concept URI is an element of the 
Evaluate message (Fig. 3). The inference engine replies to the 
query with a list of Worker agent names. The Domain 
Manager chooses one of these agents and sends the Evaluate 
message to it. Worker agents provide one or more data 
transcoding services (subsetting, data translation, etc). A 
Worker agent translates the parameters from the users request 
to the parameters required by the underlying service 
component.  The users request contains parameter values 
along with the URIs of parameter concepts in an ontology.  
The translation of parameters is done with the help of this 
ontology and an inference engine.  The underlying service 
components are coupled with a Worker agent and form the 
lowest infrastructure layer (Fig. 2).  The service component 
also registers the URIs of the parameters that it expects.  
 
Communication Protocol: The critical component in a MAS 
is the communication protocol used between the agents. This 
is because agents in a MAS need to provide and request 
information in order to achieve their goals. Unlike a tightly 
coupled system that depends on set of function calls, MIDAS 
uses a declarative approach. Communication between agents 
is accomplished through a blackboard. This type of 
architecture is often called blackboard architecture and is a 
foundation for modern user interface architectures. A 
blackboard is a common place for agents to read and write 
messages. An agent wanting to send a message puts the 
message on the blackboard. This message is tagged with 
sender and receiver information. The receiving agent checks 
the receiver information and understands that the message is 
for it. A blackboard is associated with each domain and is 
used for communication between agents in that particular 
domain. Since Domain Managers co-exist in two domains, 
viz. Global-domain (Management Domain) and the Service-
domain (Subsetting Domain), they have access to both the 
blackboards (see Fig 2).  
 
A subset of a agent communication language called the 
Knowledge Query and Manipulation language (KQML) [9] is 



adapted as a communication protocol for MIDAS. The 
adapted version is XML based. Each message consists of two 
levels of information. The communication level information 
contains information such as sender, receiver, message id and 
message type.  Whereas the content information contains 
specific content information pertaining to the type of 
message. Fig.3 depicts the XML schema for the Evaluate 
message. The content information is embedded in the 
<content> element of the message. The communication 
information is understandable (parsable) by all the agents in 
MIDAS, while only the specific receiver agent parses the 
content information. All the agents in the system are 
integrated with a communication component. This 
component can read the standard messages and write the 
standard messages to the associated message board. The 
information inside the <content> element is not parsed by this 
component. It is extracted out and passed to the associated 
agent for further processing. The set of standard messages 
used are listed below. 
 
Basic Message Set Used in MIDAS: 
• Advertise: This message indicates that the sender is 

particularly suited to process a particular type of 
requests. 

• Unadvertise: This message indicates that the sender 
is no longer willing to process a particular type of 
advertised requests.  

• Error: This message indicates that the sender cannot 
understand or process a particular message. 

• Sorry: This message indicates that the sender 
understands, but is not able to provide any (more) 
response(s) to a particular message. 

• Evaluate: This message is a request to the recipient 
to process the request. An example request is ‘subset’ 
with some parameters.  

• Reply: This message is a response to a message from 
the receiver. It can be a response to a ‘evaluate’ message.  

• Ask-Status: This message is a request to a send the 
status of a job or an agent. 

 
 
Coordination Layer Design: One of the main characteristics 
of an agent is that it is autonomous. Therefore, a Worker 
agent should be able to stop providing its service or a Domain 
Manager should be able to stop serving with out disrupting 
the whole system. This requirement is met by using the 
broker design to perform the coordination between different 
layers. The Domain Manager acts as a broker agent. Any 
worker agent going out of service sends a unadvertise 
message to the Domain Manager. This design reduces the 
responsibilities of the Global Manager as it need not keep 
track of individual Worker agents. The Global Manager 
simply passes on the request to the right Domain Managers.  
Unlike a tightly coupled matchmaking approach, this design 

reduces the search time required to find the right Worker 
agents upon receiving a request. 
 
Constraint Layer Design: This layer design provides a way to 
verify the status of a goal and provide the user with the 
results. A simple structure called the task tree serves this 
purpose. A task-tree is a simple tree structure with nodes 
representing a task and the subnodes of a node represent the 
subtasks. Each node has a task status attribute. Once the task 
assigned to a Worker agent is completed, it reports the result 
back to its Domain Manager.  The Domain Manager in turn 
sends the result with a reply message to the Global Manager, 
which sets the task status attribute associated with that task. 
The Global Manager can find out the status of a task at any 
moment by sending an ‘ask-status’ message to the Domain 
Managers.  
  
 
B. Working of the System 
Once a user submits a request to MIDAS, the Global 
Manager parses this request into subtasks and builds a task 
tree from it. The Global Manager multi-casts the evaluate 
requests for the subtasks to all the Domain Managers, starting 
from the bottom of the tree traversing inorder. This multicast 
is done by writing a sequence of evaluate messages with 
receiver=all to the global blackboard. Each Domain Manager 
maintains a list of Worker agents in its domain along with 
their advertisements. As a Worker agent comes into 
existence, it advertises its capabilities to the corresponding 
Domain Manager by sending an advertise message. The 
Domain Manager loads these advertisements into the 
inference engine. Upon receiving a service request, the 
Domain Manager sends a query to the inference engine to 
find instances of a requested service. After receiving the reply 
for a match, the Domain Manager sends an evaluate request 
to the particular agent by placing a evaluate message for this 
agent in the local blackboard. The corresponding worker 
agent reads the message from the blackboard. The evaluate 
message contains parameters required for the data 
preprocessing service. The Worker agent parses these 
parameters, maps them to the parameters required by the 
service API and invokes the service. The overall interaction 
process between the components is depicted in Fig.4.  Once 
the task is complete, the Worker agent reports to the Domain 
Manager by placing a reply message on the local blackboard. 
This message contains status as well as the result of a task.  
The Domain Manager in turn reads this message and sends a 
reply to the original request from the Global Manager. The 
Global Manager now reads this reply and resets the status of 
the task in the task-tree.  This process continues in parallel 
until all the sub-tasks in the task tree are completed. Upon 
completion, the Global Manager sends the result to the user-
interface component. Although, the processing of a single 
task is sequential, the system overall is asynchronous.  
 
 



 
IV.  FUTURE WORK 

 
Although, MIDAS currently only has two domains, 
subsetting and format translation, the design is scalable. It 
allows addition of new domains to the overall framework 
seamlessly. One can extend the functionality of MIDAS by 
adding other domains like ‘data search’ services where 
multiple Worker agents catalog and maintain separate 
metadata archives.  Adapting MIDAS to work with 
distributed web services will be investigated as part of the 
future work.  In addition, migrating MIDAS to the grid 
environment to address Semantic Grid notion will also be 
explored. 
 

ACKNOWLEDGEMENT 
 
The authors acknowledge support from the Earth Science 
Technology Office award NAG5-13575, Goddard Space 
Science Flight Center, NASA. 
 

REFERENCES 
 
[1] Berners-Lee, T., Hendler, J. and Lassila, O., “The 

Semantic Web”, Scientific American, 284, pages 34-43 
May 2001. 

[2] Wooldridge, M. and Jennings, N.R., “Intelligent Agents: 
Theory and Practice” Knowledge Engineering Review, 
Oct 1994. 

[3] Russel, S., and Norvig, P., “Artificial Intelligence: A 
Modern Approach”, Second Edition, Prentice Hall, 
Upper Saddle River, N.J., 2003. 

[4] Hyacinth, S. Nwana, “Software Agents: An Overview”, 
Knowledge Engineering Review, Sep 1996. 

[5] Durfee, E.H., Lesser, V.R. and Corkill, D.D., “Trends in 
Cooperative Distributed Problem Solving”, IEEE 
Transactions on Knowledge and Data Engineering, 
KDE-1(1), pages 63-83, Mar 1989. 

[6] Ramachandran, R., Graves, S., Conover, H., and Moe, K., 
“Earth Science Markup Language (ESML): a solution for 
scientific data-application interoperability problem”, 
Computers & Geosciences, 30(1): 117-124, 2004. 

[7] Lee, S.K. and Hwang, C.S., “Architecture layers and 
engineering approach for agent-based system”, 
Information and Software Technology 45, pages 889–
898, Mar 2003. 

[8] Haarslev, V. and Moller, R., “RACER System 
Description”, In Proceedings of the International Joint 
Conference on Automated Reasoning, IJCAR’2001. 

[9] Genesereth, M. and Fikes, R., “Knowledge Interchange 
Format”, Version 3.0 Reference Manual, Technical 
Report, Computer Science Department, Stanford 
University, USA, 1992. 

 
<a:ESML xmlns:a="ESML"  
 xmlns:ns0="file:/C:/Sunil/MiniMiDAS/MiDASOntology.daml#" 
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"  
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ESML 
 ESML.xsd"> 
 <SemanticMetaData> 
  <rdf:Description rdf:about=" #Test"> 
          <rdf:type> 
   <daml:Class rdf:about="ns0:Structure"/> 
          </rdf:type> 
   <ns0:contains rdf:resource=" #Lat"/> 
   <ns0:contains rdf:resource=" #Lon"/> 
   <ns0:contains rdf:resource=" #Time"/> 
   <ns0:contains rdf:resource=" #Field1"/> 
   <ns0:contains rdf:resource=" #Field2"/> 
  </rdf:Description> 
  <rdf:Description rdf:about=" #Lat"> 
          <rdf:type> 
              <daml:Class rdf:about="ns0:Latitude"/> 
          </rdf:type> 
          <ns0:contains rdf:resource=" #Degrees"/> 
   <ns0:contains rdf:resource=" #Scale-1"/> 
   <ns0:contains rdf:resource=" #Offset0"/> 
  </rdf:Description> 
   
   … 
  <rdf:Description rdf:about="#Field1"> 
          <rdf:type> 
              <daml:Class rdf:about="ns0:DataField"/> 
          </rdf:type> 
  </rdf:Description> 
  …           
 </SemanticMetaData> 
 <SyntacticMetaData> 
  <Ascii> 
   <Structure name =”Test” instances=”1”> 
    <Array occurs=”5”> 
     <Array occurs=”5”> 
      <Field name=”Lat” format=”%d”/> 
     </Array> 
    </Array> 
  … 
 </SyntacticMetaData> 
</a:ESML>  

 
Fig. 1. ESML Description File with the additional semantic component 
 
 

 



 
Fig. 2. MIDAS Organizational Structure 

 
 

 
Fig. 3. Schema for the Evaluate message 

 

 
Fig. 4. Example of task processing in MIDAS 

 

S u b s e t  M a n a g e r

G e n e r a l  M a n a g e r

S e a r c h  M a n a g e r
V i s u a l i z a t i o n
M a n a g e r

S u b s e t  A g e n t  1

S u b s e t  S e r v i c e 1

S u b s e t  A g e n t  2

S u b s e t  S e r v i c e 2

S e a r c h  A g e n t  1 S e a r c h  A g e n t  2

R e g i s t r y C a t a l o g

V i s A g e n t  1 V i s A g e n t  2

V i s S e r v i c e  1 V i z S e r v i c e 2

S U S E T T I N G  D O M A I N

M A N A G E M E N T   D O M A I N

USER QUERY

GLOBAL
MANAGER

AGENT

SUBSET
MANAGER

AGENT

SUBSET
AGENT

MESSAGE
BOARD

MESSAGE
BOARD

SUBSETTING
SERVICE

(1) Decompose user request

Inference Engine
+ ONTOLOGIES

ESML
DESCRIPTION 

FILE

(2) Post tasks

(3) Select task

(5) Assign task

(6) Retrieve task

(7) Map user request to
Subsetting service API

(8) Invoke Subsetting
Service and get results

(4)Service concept look up

USER QUERY

GLOBAL
MANAGER

AGENT

SUBSET
MANAGER

AGENT

SUBSET
AGENT

MESSAGE
BOARD

MESSAGE
BOARD

SUBSETTING
SERVICE

(1) Decompose user request

Inference Engine
+ ONTOLOGIES

ESML
DESCRIPTION 

FILE

(2) Post tasks

(3) Select task

(5) Assign task

(6) Retrieve task

(7) Map user request to
Subsetting service API

(8) Invoke Subsetting
Service and get results

(4)Service concept look up


